87 research outputs found

    The treatment of heterotopic human colon xenograft tumors in mice with 5-fluorouracil attached to magnetic nanoparticles in combination with magnetic hyperthermia is more efficient than either therapy alone

    Get PDF
    Magnetic nanoparticles (MNPs) have shown promising features to be utilized in combinatorial magnetic hyperthermia and chemotherapy. Here, we assessed if a thermo-chemotherapeutic approach consisting of the intratumoral application of functionalized chitosan- coated MNPs (CS-MNPs) with 5-fluorouracil (5FU) and magnetic hyperthermia prospectively improves the treatment of colorectal cancer. With utilization of a human colorectal cancer (HT29) heterotopic tumor model in mice, we showed that the thermo-chemotherapeutic treatment is more efficient in inactivating colon cancer than either tumor treatments alone (i.e., magnetic hyperthermia vs. the presence of 5FU attached to MNPs). In particular, the thermo-chemotherapeutic treatment significantly (p 0.05), and (d) that it impacts tumor vascularity (reduced expression of CD31 and αvβ3 integrin (p < 0.01 to 0.001) and consequently nutrient supply to tumors. We further hypothesize that tumor cells die, at least in parts, via a ROS dependent mechanism called oxeiptosis. Taken together, a very effective elimination of colon cancers seems to be feasible by utilization of repeated thermo-chemotherapeutic therapy sessions in the long-term

    Spinal compression of Atlantic cod (Gadus morhua L.) from the German Wadden Sea

    Get PDF
    ABSTRACT: A definihon of spinal compression of Atlantic cod Gadus morhua L. from the German Wadden Sea is presented, based on the relation of head length to total body length of the fish. Compressed individuals are defined as having values of X = H/T X 100 &gt; 27.74 (where H = head length and T = total body length). Epizootiological results of an extensive field survey in 1989 revealed decreasing prevalence of compression with increasing fish length. In small cod of the Eider and Elbe estuaries, prevalence varied seasonally with a maximum in March-April, apparently due to abnormal migration behaviour of deformed fish. Prevalence was significantly higher in the northern part of the German Wadden Sea than in the estuaries of the Ems, Weser and Elbe

    The Peptide/Antibody-Based Surface Decoration of Calcium Phosphate Nanoparticles Carrying siRNA Influences the p65 NF-κB Protein Expression in Inflamed Cells In Vitro

    Get PDF
    Earlier studies with nanoparticles carrying siRNA were restricted to investigating the inhibition of target-specific protein expression, while almost ignoring effects related to the nanoparticle composition. Here, we demonstrate how the design and surface decoration of nanoparticles impact the p65 nuclear factor-kappa B (NF-κB) protein expression in inflamed leucocytes and endothelial cells in vitro. We prepared silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against p65 NF-κB and surface-decorated with peptides or antibodies. We show that RGD-decorated nanoparticles are efficient in down-regulating p65 NF-κB protein expression in endothelial cells as a result of an enhanced specific cellular binding and subsequent uptake of nanoparticles. In contrast, nanoparticles decorated with IgG (whether specific or not for CD69) are efficient in down-regulating p65 NF-κB protein expression in T-cells, but not in B-cells. Thus, an optimized nanoparticle decoration with xenogenic IgG may stimulate a specific cellular uptake. In summary, the composition of siRNA-loaded calcium phosphate nanoparticles can either weaken or stimulate p65 NF-κB protein expression in targeted inflamed leucocytes and endothelial cells. In general, unveiling such interactions may be very useful for the future design of anti-p65 siRNA-based nanomedicines for treatment of inflammation-associated diseases

    MNP-enhanced microwave medical imaging by means of pseudo-noise sensing

    Get PDF
    Magnetic nanoparticles have been investigated for microwave imaging over the last decade. The use of functionalized magnetic nanoparticles, which are able to accumulate selectively within tumorous tissue, can increase the diagnostic reliability. This paper deals with the detecting and imaging of magnetic nanoparticles by means of ultra-wideband microwave sensing via pseudo-noise technology. The investigations were based on phantom measurements. In the first experiment, we analyzed the detectability of magnetic nanoparticles depending on the magnetic field intensity of the polarizing magnetic field, as well as the viscosity of the target and the surrounding medium in which the particles were embedded, respectively. The results show a nonlinear behavior of the magnetic nanoparticle response depending on the magnetic field intensity for magnetic nanoparticles diluted in distilled water and for magnetic nanoparticles embedded in a solid medium. Furthermore, the maximum amplitude of the magnetic nanoparticles responses varies for the different surrounding materials of the magnetic nanoparticles. In the second experiment, we investigated the influence of the target position on the three-dimensional imaging of the magnetic nanoparticles in a realistic measurement setup for breast cancer imaging. The results show that the magnetic nanoparticles can be detected successfully. However, the intensity of the particles in the image depends on its position due to the path-dependent attenuation, the inhomogeneous microwave illumination of the breast, and the inhomogeneity of the magnetic field. Regarding the last point, we present an approach to compensate for the inhomogeneity of the magnetic field by computing a position-dependent correction factor based on the measured magnetic field intensity and the magnetic susceptibility of the magnetic particles. Moreover, the results indicate an influence of the polarizing magnetic field on the measured ultra-wideband signals even without magnetic nanoparticles. Such a disturbing influence of the polarizing magnetic field on the measurements should be reduced for a robust magnetic nanoparticles detection. Therefore, we analyzed the two-state (ON/OFF) and the sinusoidal modulation of the external magnetic field concerning the detectability of the magnetic nanoparticles with respect to these spurious effects, as well as their practical application

    Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential

    Get PDF
    Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features. In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels. The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed. Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia

    Hepatic excretory function in sepsis: implications from biophotonic analysis of transcellular xenobiotic transport in a rodent model

    Get PDF
    INTRODUCTION: Hepatobiliary elimination of endo- and xenobiotics is affected by different variables including hepatic perfusion, hepatocellular energy state and functional integrity of transporter proteins, all of which are altered during sepsis. A particular impairment of hepatocellular transport at the canalicular pole resulting in an accumulation of potentially hepatotoxic compounds would have major implications for critical care pharmacology and diagnostics. METHODS: Hepatic transcellular transport, that is, uptake and hepatobiliary excretion, was studied in a rodent model of severe polymicrobial sepsis by two different biophotonic techniques to obtain insights into the handling of potentially toxic endo- and xenobiotics in sepsis. Direct and indirect in vivo imaging of the liver was performed by intravital multifluorescence microscopy and non-invasive whole-body near-infrared (NIRF) imaging after administration of two different, primarily hepatobiliary excreted xenobiotics, the organic anionic dyes indocyanine green (ICG) and DY635. Subsequent quantitative data analysis enabled assessment of hepatic uptake and fate of these model substrates under conditions of sepsis. RESULTS: Fifteen hours after sepsis induction, animals displayed clinical and laboratory signs of multiple organ dysfunction, including moderate liver injury, cholestasis and an impairment of sinusoidal perfusion. With respect to hepatocellular transport of both dyes, excretion into bile was significantly delayed for both dyes and resulted in net accumulation of potentially cytotoxic xenobiotics in the liver parenchyma (for example, specific dye fluorescence in liver at 30 minutes in sham versus sepsis: ICG: 75% versus 89%; DY635 20% versus 40% of maximum fluorescence; P < 0.05). Transcutaneous assessment of ICG fluorescence by whole body NIRF imaging revealed a significant increase of ICG fluorescence from the 30th minute on in the bowel region of the abdomen in sham but not in septic animals, confirming a sepsis-associated failure of canalicular excretion. CONCLUSIONS: Hepatocytes accumulate organic anions under conditions of sepsis-associated organ dysfunction. These results have potential implications for monitoring liver function, critical care pharmacology and the understanding of drug-induced liver injury in the critically ill

    Multifactorial diagnostic NIR imaging of CCK2R expressing tumors

    Get PDF
    AbstractOptical imaging-based diagnostics identify malignancies based on molecular changes instead of morphological criteria in a non-invasive, irradiation free process. The aim of this study was to improve imaging efficiency by the development of a new Cholecystokinin-2-receptor targeted fluorescent peptide that matches the clinical needs regarding biodistribution and pharmacokinetics while displaying superior target specificity. Furthermore we performed multifactorial imaging of Cholecystokinin-2-receptor and tumor metabolism, since simultaneous targeting of various tumor biomarkers could intensely increase tumor identification and characterization. Affinity and specificity of the fluorescent Cholecystokinin-2-receptor targeted minigastrin (dQ-MG-754) were tested in vitro. We conducted in vivo imaging of the dQ-MG-754 probe alone and in a multifactorial approach with a GLUT-1 targeted probe (IR800 2-DG) on subcutaneous xenograft bearing athymic nude mice up to 24 h after intravenous injection (n = 5/group), followed by ex vivo biodistribution analysis and histological examination. We found specific, high affinity binding (Kd = 1.77 nm ± 0.6 nm) of dQ-MG-754 to Cholecystokinin-2-receptor expressing cells and xenografts as well as favorable pharmacokinetics for fluorescence-guided endoscopy. We successfully performed multifactorial imaging for the simultaneous detection of the Cholecystokinin-2-receptor and GLUT-1 targeted probe. Prominent differences in uptake patterns of the two contrast agents could be detected. The results were validated by histological examinations. The multifactorial imaging approach presented in this study could facilitate cancer detection in diagnostic imaging and intraoperative and endoscopic applications. Especially the dQ-MG-754 probe bears great potential for translation to clinical endoscopy imaging, because it combines specific high affinity binding with renal elimination and a favorable biodistribution
    • …
    corecore